
Python Dictionary
In this article, you'll learn everything about Python dictionary; how they are created,

accessing, adding and removing elements from them and, various built-in methods.

Python dictionary is an unordered collection of items. While other compound data types have

only value as an element, a dictionary has a key: value pair.

Dictionaries are also called associative arrays or mappings or hashes.

Dictionaries are optimized to retrieve values when the key is known.

How to create a dictionary?

Creating a dictionary is as simple as placing items inside curly braces {} separated by

comma.

An item has a key and the corresponding value expressed as a pair, key: value.

While values can be of any data type and can repeat, keys must be of immutable type

(string, number or tuple with immutable elements) and must be unique.

empty dictionary

my_dict = {}

dictionary with integer keys

my_dict = {1: 'apple', 2: 'ball'}

dictionary with mixed keys

my_dict = {'name': 'John', 1: [2, 4, 3]}

using dict()

my_dict = dict({1:'apple', 2:'ball'})

from sequence having each item as a pair

my_dict = dict([(1,'apple'), (2,'ball')])

As you can see above, we can also create a dictionary using the built-in function dict().

https://www.programiz.com/python-programming/string
https://www.programiz.com/python-programming/numbers
https://www.programiz.com/python-programming/tuple

How to access elements from a dictionary?

While indexing is used with other container types to access values, dictionary uses keys. Key

can be used either inside square brackets or with the get() method.

The difference while using get() is that it returns None instead of KeyError, if the key is not

found.

my_dict = {'name':'Jack', 'age': 26}

Output: Jack

print(my_dict['name'])

Output: 26

print(my_dict.get('age'))

Trying to access keys which doesn't exist throws error

my_dict.get('address')

my_dict['address']

When you run the program, the output will be:

Jack

26

How to change or add elements in a
dictionary?

Dictionary are mutable. We can add new items or change the value of existing items using

assignment operator.

If the key is already present, value gets updated, else a new key: value pair is added to the

dictionary.

my_dict = {'name':'Jack', 'age': 26}

update value

my_dict['age'] = 27

#Output: {'age': 27, 'name': 'Jack'}

print(my_dict)

add item

my_dict['address'] = 'Downtown'

Output: {'address': 'Downtown', 'age': 27, 'name': 'Jack'}

print(my_dict)

When you run the program, the output will be:

{'name': 'Jack', 'age': 27}

{'name': 'Jack', 'age': 27, 'address': 'Downtown'}

How to delete or remove elements from a
dictionary?

We can remove a particular item in a dictionary by using the method pop(). This method

removes as item with the provided key and returns the value.

The method, popitem() can be used to remove and return an arbitrary item (key, value) form

the dictionary. All the items can be removed at once using the clear() method.

We can also use the del keyword to remove individual items or the entire dictionary itself.

create a dictionary

squares = {1:1, 2:4, 3:9, 4:16, 5:25}

remove a particular item

Output: 16

print(squares.pop(4))

Output: {1: 1, 2: 4, 3: 9, 5: 25}

print(squares)

remove an arbitrary item

Output: (1, 1)

print(squares.popitem())

Output: {2: 4, 3: 9, 5: 25}

print(squares)

delete a particular item

del squares[5]

Output: {2: 4, 3: 9}

print(squares)

remove all items

squares.clear()

When you run the program, the output will be:

16

{1: 1, 2: 4, 3: 9, 5: 25}

(1, 1)

{2: 4, 3: 9, 5: 25}

{2: 4, 3: 9}

{}

Python Dictionary Methods

Methods that are available with dictionary are tabulated below. Some of them have already

been used in the above examples.

Python Dictionary Methods

Method Description

clear() Remove all items form the dictionary.

copy() Return a shallow copy of the dictionary.

fromkeys(seq[, v])

Return a new dictionary with keys from seq and value equal

to v(defaults to None).

get(key[,d])

Return the value of key. If key doesnot exit, return d (defaults

to None).

items() Return a new view of the dictionary's items (key, value).

keys() Return a new view of the dictionary's keys.

pop(key[,d])

Remove the item with key and return its value or d if key is not

found. If d is not provided and key is not found, raises KeyError.

popitem()

Remove and return an arbitary item (key, value). Raises KeyError if

the dictionary is empty.

setdefault(key[,d])

If key is in the dictionary, return its value. If not, insert key with a

value of d and return d (defaults to None).

update([other])

Update the dictionary with the key/value pairs from other,

overwriting existing keys.

values() Return a new view of the dictionary's values

Here are a few example use of these methods.

https://www.programiz.com/python-programming/methods/dictionary/clear
https://www.programiz.com/python-programming/methods/dictionary/copy
https://www.programiz.com/python-programming/methods/dictionary/fromkeys
https://www.programiz.com/python-programming/methods/dictionary/get
https://www.programiz.com/python-programming/methods/dictionary/items
https://www.programiz.com/python-programming/methods/dictionary/keys
https://www.programiz.com/python-programming/methods/dictionary/pop
https://www.programiz.com/python-programming/methods/dictionary/popitem
https://www.programiz.com/python-programming/methods/dictionary/setdefault
https://www.programiz.com/python-programming/methods/dictionary/update
https://www.programiz.com/python-programming/methods/dictionary/values

marks = {}.fromkeys(['Math','English','Science'], 0)

Output: {'English': 0, 'Math': 0, 'Science': 0}

print(marks)

for item in marks.items():

 print(item)

Output: ['English', 'Math', 'Science']

list(sorted(marks.keys()))

Python Dictionary Comprehension

Dictionary comprehension is an elegant and concise way to create new dictionary from an

iterable in Python.

Dictionary comprehension consists of an expression pair (key: value) followed

by forstatement inside curly braces {}.

Here is an example to make a dictionary with each item being a pair of a number and its

square.

squares = {x: x*x for x in range(6)}

Output: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

print(squares)

This code is equivalent to

squares = {}

for x in range(6):

 squares[x] = x*x

A dictionary comprehension can optionally contain more for or if statements.

An optional if statement can filter out items to form the new dictionary.

Here are some examples to make dictionary with only odd items.

odd_squares = {x: x*x for x in range(11) if x%2 == 1}

Output: {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

print(odd_squares)

https://www.programiz.com/python-programming/for-loop
https://www.programiz.com/python-programming/if-elif-else

Other Dictionary Operations

Dictionary Membership Test

We can test if a key is in a dictionary or not using the keyword in. Notice that membership

test is for keys only, not for values.

squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

Output: True

print(1 in squares)

Output: True

print(2 not in squares)

membership tests for key only not value

Output: False

print(49 in squares)

Iterating Through a Dictionary

Using a for loop we can iterate though each key in a dictionary.

squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

for i in squares:

 print(squares[i])

Built-in Functions with Dictionary

Built-in functions like all(), any(), len(), cmp(), sorted() etc. are commonly used with

dictionary to perform different tasks.

Built-in Functions with Dictionary

Function Description

all()

Return True if all keys of the dictionary are true (or if the dictionary is

empty).

any()

Return True if any key of the dictionary is true. If the dictionary is empty,

return False.

len() Return the length (the number of items) in the dictionary.

cmp() Compares items of two dictionaries.

sorted() Return a new sorted list of keys in the dictionary.

https://www.programiz.com/python-programming/methods/built-in/all
https://www.programiz.com/python-programming/methods/built-in/any
https://www.programiz.com/python-programming/methods/built-in/len
https://www.programiz.com/python-programming/methods/built-in/sorted

Here are some examples that uses built-in functions to work with dictionary.

squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}

Output: 5

print(len(squares))

Output: [1, 3, 5, 7, 9]

print(sorted(squares))

